

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 1059-1062

New building blocks for peptide and depsipeptide synthesis: hexafluoroacetone protected L-homoisoserine and **D,L-homoisocysteine derivatives**

Gábor Radics, a Raul Pires, a Beate Koksch, a Salah M. El-Kousy and Klaus Burgera,*

^aDepartment of Organic Chemistry, University of Leipzig, Johannisallee 29, D-04103 Leipzig, Germany ^bFaculty of Science, Minufiya University, Shebin El-Kom, Egypt

Received 12 November 2002; revised 27 November 2002; accepted 28 November 2002

Dedicated to Professor Dr. Lothar Beyer on the occasion of his 65th birthday

Abstract—Efficient syntheses of L-homoisoserine and D,L-homoisocysteine derivatives starting from L-malic and D,L-thiomalic acid using hexafluoroacetone as protecting and activating agent are described. The new compounds are interesting building blocks for the preparation of non-natural peptides and depsipeptides as well as for the construction of new GABA derivatives. © 2003 Elsevier Science Ltd. All rights reserved.

Homoisoserine (2-hydroxy-4-aminobutyric acid) is a constituent of numerous antibiotics, like arbekacin,² amikacin3 and butirosin.4 Furthermore, it was identified as subunit of phytosiderophores, e.g. in distichonic, avenic and mugineic acid. Phytosiderophores are responsible for iron up-take and iron-transport in plants like wheat and oats.⁵ Homoisoserine acts as inhibitor for GABA up-take and exhibits antitumor activity.6 Therefore, numerous syntheses have been developed, starting from 4-amino-2-oxobutyric acid,7 Z-β-alanine,⁶ isoxazolidin-5-carboxylate,⁸ malic acid acid, 10 amide,9 L-2,4-diamino-butyric pyrrolidone.11

In contrast, homoisocysteine (2-mercapto-4-aminobutyric acid) has not been found in nature, to the best of our knowledge. Although, the first publication on homoisocysteine appeared already in 1963,12 there is no information available about its chemistry.

Recently, we demonstrated that a new protection/activation concept, developed for regioselective functionalization of multifunctional α-amino acids like aspartic acid, 13 can also be applied to α-hydroxy-α,ωdicarboxylates¹⁴ and their thioanalogues.¹⁵ The syntheses of L-isoserine¹⁶ and D,L-isocysteine¹⁷ represent the

first examples of the application of this new synthetic

approach to multifunctional α -hydroxy and α -mercapto

acids. We now report on the synthesis of L-homoisoser-

ine and D,L-homoisocysteine derivatives and their incorporation into peptidomimetics using hexa-

α-Hydroxy and α-mercapto acids react with hexa-

fluoroacetone in dimethyl sulfoxide at room tempera-

ture to give 2,2-bis(trifluoromethyl)-1,3-dioxolan-4-ones

(3)¹⁸ and 2,2-bis(trifluoromethyl)-1,3-oxathiolan-5-ones (4). 15 in excellent yields (85–90%). In one step, protec-

fluoroacetone as protecting and activating agent.

Compounds 5 and 6 exhibit the typical reaction pattern of acid chlorides. Diazoketones 7 and 8 are formed in very good yields (90%) on treatment with an excess of

dielectrophiles, and the ω -function is more reactive than

the α one (Scheme 1).

0040-4039/03/\$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02712-0

tion of the α -hydroxy and the α -mercapto as well as the adjacent carboxy group can be achieved. Concomitantly, the α-carboxy group is activated toward nucleophiles and can be regioselectively functionalized.¹⁴ A variety of functional groups in the side-chain are tolerated, e.g. an ω-carboxy group remains unaffected and can be selectively activated and derivatized in a consecutive step. On heating with an excess of thionyl chloride compounds 3 and 4 are converted into acid chlorides 5 and 6 in high yields (80–85%). Compounds 5 and 6 are

Keywords: L-homoisoserine; D,L-homoisocysteine; GABA derivatives; peptide modification; Wolff rearrangement; Curtius rearrangement. [☆] Part 3. For part 2 see Ref. 1

^{*} Corresponding author. Fax: (49) 341 9736599.

Scheme 1. Reagents and conditions: (a) HFA/DMSO/rt; (b) SOCl₂/reflux/4 h; (c) >2 equiv. $CH_2N_2/Et_2O/-78^{\circ}C$ to rt/12 h; (d) $tBuOH/reflux/PhCO_2Ag/X=O$: 10 min, X=S: 2 h; (e) $SOCl_2/reflux/4$ h; (f) 1.1 equiv. $TMS-N_3/toluene/80-90^{\circ}C/24$ h; (g) 1.1 equiv. $ROH/CHCl_3/reflux/12$ h.

diazomethane (>2 equiv.:1 equiv. is necessary for trapping the HCl formed during the reaction), which can be easily purified by column chromatography (eluent: DCM). Wolff rearrangement¹⁹ was accomplished on heating of compounds 7 and 8 in dry tert-butanol in the presence of catalytic amounts of silver benzoate. The ketene formed first is trapped by tert-butanol. The tert-butyl esters (9, 10) are directly transformed into acid chlorides (11, 12) on heating with thionyl chloride. Alternatively, chain elongation can be achieved, however in lower yields, via Photo-Wolff rearrangement in aqueous dioxane to give the corresponding α -hydroxy and α-mercapto glutaric acid derivatives, which are directly subjected to treatment with thionyl chloride to form acid chlorides 11 and 12, which can be purified by distillation in vacuo. For the introduction of the γ amino group, acyl azides are synthesized on reaction with trimethylsilyl azide, which are subjected to a Curtius rearrangement²⁰ to give the isocyanates 13 and 14 on heating. Compounds 13 and 14 are dielectrophiles. As expected, the isocyanate moiety is the more reactive center towards nucleophiles. This strategy offers an elegant and efficient route for regioselective functionalization of trifunctional compounds with a minimum of steps.

Recently, we demonstrated that a homologue of 13-(5S)-2,2-bis(trifluoromethyl)-4-oxo-1,3-dioxolan-5-yl]-methyl isocyanate¹⁶ is an excellent reagent for photo-affinity labeling experiments.²¹

Introduction of orthogonal protection groups can be accomplished on heating isocyanates 13 and 14 with alcohols. Treatment with *tert*-butanol, benzyl alcohol and 9-fluorenylmethanol provides access to N-Boc-, N-Z- and N-Fmoc-protected 4-amino-2-hydroxybutyric acid and 4-amino-2-mercaptobutyric acid derivatives (15, 16), which represent -XH-protected (X=O, S) and carboxy group activated species. They are stabile compounds and can be stored for months in a fridge on exclusion of moisture (Scheme 2).

Compounds 15 and 16 are ready for direct application in peptide synthesis. On reaction with amino acid derivatives (α -amino acid, β -amino acid and γ -amino acid esters, amides and hydrazides) dipeptides of type 17,19 and azapeptides of type 21,22 become readily accessible. They represent a class of dipeptide derivatives which are interesting per se, since they are GABA derivatives. Furthermore, they represent new building blocks for peptide and depsipeptide modification. Remarkably, peptide bond formation and deblocking of the α -functionality occur in one-step. The reaction sequence is suitable for the generation of libraries of peptidomimetics.

3-Hydroxy-2-pyrrolidinones 18 can be isolated as minor by-products (up to 10%) of the aminolytic ring opening of 15a-c. They are the result of a base-induced intramolecular cyclocondensation reaction. The thioderivatives should be handled under inert gas atmo-

Scheme 2. Reagents and conditions: (h) 1.2 equiv. HCl×H-Phe-OR²/DMF/1.2 equiv. NMM/12 h; (i) 1.2 equiv. H₂NNHCO₂R³/DMF/12 h.

sphere to avoid oxidation of the mercapto group. Compounds containing the mercapto or mercaptoacyl moiety often exhibit strong inhibitory effects on metal-containing enzymes (metallozymes),²² similar to hydroxamic acids.²³

A growing number of reports focus on structured peptidomimetic compounds built from two or more different types of monomers (peptide hybrids).²⁴ The use of ω-amino acids in peptide design is a newly emerging area of current research.²⁵ This is mainly due to the ability of these amino acids to modify the geometry of the peptide backbone,^{25d} providing proteolytic resistance to bioactive peptide sequences.²⁶ Insertion of one or more extra carbon atoms into intramolecular hydrogen bonded, folded structures leads to the creation of unusual turns and novel helical folds.^{27,28}

In the case of L-malic acid we proved that all steps of the reaction sequence occur stereoconservatively (NMR analysis).

On further applications of hexafluoroacetone-protected α -functionalized and α , α -diffunctionalized β - and γ -amino acids in peptide, depsipeptide and glycopeptide synthesis we report elsewhere.

Acknowledgements

The authors are grateful to DFG (Bu 277/21-1) and to FCI for financial support. S.M.E thanks DFG for a grant.

References

 Burger, K.; Böttcher, C.; Radics, G.; Hennig, L. Tetrahedron Lett. 2001, 42, 3061–3063.

- Kondo, S.; Tamura, A.; Gomi, S.; Ikeda, Y.; Takeuchi, T.; Mitsuhashi, S. J. Antibiot. 1993, 46, 310–315.
- 3. (a) Kawaguchi, H.; Naito, T. In *Chronicles of Drug Discovery*; Bindra, J. S.; Lednicer, D., Eds.; J. Wiley & Sons: New York, NY, 1983; Vol. 2, pp. 207–234; (b) Kawasaki, H.; Naito, T.; Nakagawa, S.; Fujisawa, K. *J. Antibiot.* **1972**, *25*, 695–708.
- Woo, P. W. K.; Dion, H.; Bartz, Q. R. Tetrahedron Lett. 1971, 1, 2617–2620.
- Shioiri, T.; Hamada, Y.; Matsuura, F. Tetrahedron 1995, 51, 3939–3958.
- 6. Harris, K.; Shi, J. Biocatalysis 1992, 5, 195-201.
- 7. Iriuchijima, S.; Ogawa, M. Synthesis 1982, 41-42.
- 8. Brehm, L.; Krogsgaard-Larsen, P. Acta Chem. Scand. B 1979, 33, 52–56.
- 9. Yoneta, Y.; Shibahara, S.; Fukatsu, S.; Seki, S. Bull. Chem. Soc. Jpn. 1978, 51, 3296–3297.
- Horiuchi, Y.; Akita, E.; Ito, T. Agric. Biol. Chem. 1976, 40, 1649–2620.
- 11. Yamada, Y.; Okada, H. *Agric. Biol. Chem.* **1976**, *40*, 1437–1438.
- (a) Sankyo Co. Ltd.; JP 1111763, 1961; Chem. Abstr.
 1963, 59, 13827; (b) Sankyo Co., JP 1011064, 1961; Chem. Abstr. 1965, 62, 2824d.
- Burger, K.; Rudolph, M.; Fehn, S.; Worku, A.; Golubev,
 A. S. Amino Acids 1993, 12, 195–199.
- Burger, K.; Windeisen, E.; Heistracher, E.; Lange, T.;
 Abdel Aleem, H. Monatsh. Chem. 2002, 133, 41–58.
- Schedel, H.; Quaedflieg, P. J. L. M.; Broxterman, Q. B.;
 Bisson, W.; Duchateau, L. H. L.; Maes, I. C. M.;
 Herzschuh, R.; Burger, K. Tetrahedron: Asymmetry 2000,
 11, 2125–2131.
- (a) Burger, K.; Windeisen, E.; Pires, R. J. Org. Chem.
 1995, 60, 7641–7645; (b) Pires, R.; Burger, K. Synthesis
 1996, 1277–1279.
- 17. Pires, R.; Burger, K. Tetrahedron Lett. 1996, 8159-8160.
- Weygand, F.; Burger, K. Chem. Ber. 1966, 99, 2880– 2884.

- (a) Doyle, M. P.; McKervey, M. A. Chem. Commun.
 1997, 983–989; (b) Ye, T.; McKervey, M. A. Chem. Rev.
 1994, 94, 1091–1160; (c) Meier, H.; Zeller, K.-P. Angew. Chem., Int. Ed. Engl. 1974, 14, 32–63; (d) Guibourdenche, C.; Seebach, D.; Natt, F. Helv. Chim. Acta
 1997, 80, 1–13; (e) Leggio, A.; Ligouri, A.; Procopio, A.; Sindona, G. J. Chem. Soc., Perkin Trans. 1 1997, 1969–1971.
- 20. Curtius, T.; Darapsky, S. J. Prakt. Chem. 1901, 63, 428.
- (a) Rühl, T.; Hennig, L.; Hatanaka, Y.; Burger, K.; Welzel, P. *Tetrahedron Lett.* 2000, 41, 4555–4558; (b) Rühl, T.; Hennig, L.; Hatanaka, Y.; Burger, K.; Welzel, P. *Tetrahedron Lett.* 2001, 42, 9297.
- 22. Fray, M. J.; Ellis, D. Tetrahedron 1998, 54, 13825-13832.
- (a) Miller, M. J. Acc. Chem. Res. 1986, 19, 49–56; (b) Bihovsky, R.; Levinson, B. L.; Loewi, R. C.; Erhardt, P. W.; Polokoff, M. A. J. Med. Chem. 1995, 38, 2119–2129.
- 24. Soth, M. J.; Nowick, J. S. *J. Org. Chem.* **1999**, *64*, 276–281 and references cited therein.
- 25. (a) Seebach, D.; Matthews, J. L. *Chem. Commun.* **1997**, 2015–2022; (b) Seebach, D.; Matthews, J. L.; Meden, A.; Wessels, T.; Baerlocher, C.; McCusker, L. B. *Helv. Chim.*

- Acta 1997, 80, 173–182; (c) Krauthäuser, S.; Christianson, L. A.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 1997, 119, 11719–11720; (d) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173–180; (e) Banerjee, A.; Balaram, B. Curr. Sci. 1997, 73, 1067–1077; (f) Aubé, J. Recent Advances in Peptidomimetics, Tetrahedron Symposium-in-Print No. 83, Elsevier: Amsterdam, 2000; Vol. 56, pp. 9725–9841 and references cited therein.
- 26. Frackenpohl, J.; Arvidsson, P. I.; Schreiber, J. V.; Seebach, D. *Chem. BioChem.* **2001**, *2*, 445–455.
- (a) Woll, M. G.; Lai, J. R.; Guzei, I. A.; Taylor, S. J. C.; Smith, M. E. B.; Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 11077–11078; (b) Karle, I. L.; Pramanik, A.; Banerjee, A.; Bhattacharjya, S.; Balaram, P. J. Am. Chem. Soc. 1997, 119, 9087–9095.
- (a) Maji, S. K.; Banerjee, R.; Velmurugan, D.; Razak, A.; Fun, H. K.; Banerjee, A. J. Org. Chem. 2002, 67, 633–639 and references cited therein; (b) Hintermann, T.; Gademann, K.; Jaun, B.; Seebach, D. Helv. Chim. Acta 1998, 81, 983–1002; (c) Hanessian, S.; Luo, X.; Schaum, R.; Michnick, S. J. Am. Chem. Soc. 1998, 120, 8569–8570.